All News / Outbreaks /

A great new article on Hemolytic Uremic Syndrome

Hemolytic Uremic Syndrome: An Emerging Health Risk

SAMIYA RAZZAQ, M.D., University of Arkansas for Medical Sciences College of Medicine, Little Rock, Arkansas

Hemolytic uremic syndrome is caused primarily by Shiga toxin-producing Escherichia coli O157:H7. The most common cause of acute renal failure in children, hemolytic uremic syndrome also can occur in adults. Characteristic features of the syndrome are microangiopathic anemia, thrombotic thrombocytopenia, and renal failure. Although the presentation of this syndrome is diverse, the classic prodromal illness is bloody diarrhea following ingestion of hamburger meat contaminated with E. coli O157:H7, the most common mode of infection in the United States. Children with hemolytic uremic syndrome generally present with gastroenteritis complaints (e.g., abdominal pain or tenderness, nausea or vomiting, fever, anemia); affected adults may be asymptomatic. Complications from hemolytic uremic syndrome can include intussusception, chronic renal failure, and seizures in severe cases. Because an incubation period of approximately one week occurs between the start of diarrhea and the onset of hemolytic uremic syndrome, physicians should maintain a high index of suspicion; early laboratory testing is important to diagnose and manage this syndrome. Obtaining a complete blood count and stool culture and performing Shiga toxin testing are the first of a series of tests that may help diagnose hemolytic uremic syndrome. (Am Fam Physician 2006;74:991-6, 998. Copyright © 2006 American Academy of Family Physicians.)


Hemolytic uremic syndrome is the most common cause of acute renal failure in children, and the incidence of this syndrome in children is increasing worldwide.1 First identified in 1955, hemolytic uremic syndrome affects children and adults.2 Attempts to link it to only underdeveloped countries are unsupported because outbreaks occurred in parts of Europe beginning in 1992, the United Kingdom in 1994,3 the United States in 1996,4,5 and Japan in 1996.1,6,7

Etiology

Hemolytic uremic syndrome can be classified into two types, depending on the presence of a diarrheal prodrome. Diarrhea-positive hemolytic uremic syndrome is associated strongly with Shiga toxin-producing Escherichia coli (STEC). Diarrhea-negative hemolytic uremic syndrome is seen in adults and occurs sporadically.8 Diarrhea-associated hemolytic uremic syndrome is more common in children. It can be endemic, linked to a common source of infection, and result in bloody diarrhea. Precipitating factors can include familial predisposition (e.g., factor H deficiency),2 infections (e.g., E. coli, Streptococcus pneumoniae), pregnancy, or medications such as cyclosporine (Sandimmune)9 (Table 110). E. coli O157:H7 is responsible for most of the diarrhea-associated hemolytic uremic syndrome in children in North America, but other strains that are more difficult to detect also have been implicated.4-7

Pathophysiology

The pathophysiology of hemolytic uremic syndrome is not well understood. Proinflammatory (elevated interleukin-8 and tumor necrosis factor a)1 and prothrombotic changes in the coagulation pathway, along with damage to the endothelial cells, result in end-organ damage.11 Results of the latest studies show damage to mesangial cells, renal tubular epithelial cells, monocytes, and monocytes-derived cell lines in addition to the endothelial cell.1

Most strains of E. coli are harmless; however, enterohemorrhagic E. coli can release Shiga toxins that attach to and damage the endothelial lining of the intestine, resulting in hemorrhagic and ulcerative lesions.2 Subsequently, the Shiga toxins gain access to the circulatory system. By attaching to the Gb3 receptors, protein synthesis is inhibited, resulting in cell injury and death; this causes microangiopathic hemolytic anemia, thrombocytopenia, and deposits of microthrombi.1 These ischemic changes manifest as damage to various organs, especially the kidneys.2

E. coli O157:H7 is believed to cause more than 80 percent of the STEC infections that lead to hemolytic uremic syndrome.12 This microorganism is not a normal part of the human intestinal flora13 but is present in the intestines of 1 percent of healthy beef cattle; the meat can become contaminated during the slaughter and processing of the animal. E. coli also has been found to contaminate other food products (Table 2). The most common form of transmission to children in the United States is ingestion of undercooked ground beef containing E. coli bacteria. E. coli bacteria also may be transmitted by contact with persons who inadequately wash their hands, resulting in fecal and oral contamination and transmission.14

Epidemiology

Hemolytic uremic syndrome primarily occurs in children one to 10 years of age,1,15 with an average annual incidence of one to three cases per 100,000 children9 and a survival rate of nearly 95 percent. Some studies indicate that rural populations are more at risk than urban populations,14,16 and the incidence is higher in warmer months, peaking from June to September.13 Occurrences may be sporadic or present as an outbreak. A study conducted in the United Kingdom, in which confections intentionally were artificially contaminated with E. coli O157:H7,
showed that the Shiga toxin-producing strains could survive for as long as one year, depending on storage conditions.17

Three to 15 percent of persons who have STEC with diarrhea can develop hemolytic uremic syndrome.18 Young children and older persons with altered immune response,19 as well as persons who have been in contact with infected farm animals, are particularly vulnerable. In addition to age, risk factors associated with hemolytic uremic syndrome include bloody diarrhea, fever, and elevated white blood cell count and C-reactive protein levels.6 The use of antibiotics or antimotility/antidiarrheal and antimicrobial agents in the early stages of diarrhea has been shown to increase the risk of hemolytic uremic syndrome because the gut is exposed to a greater number of toxins for a longer period as intestinal motility slows.13,20

Clinical Characteristics

The classic triad of features for hemolytic uremic syndrome consists of microangiopathic hemolytic anemia, thrombocytopenia, and acute renal failure.21-23 Children infected with E. coli O157:H7 are symptomatic; infected adults may be asymptomatic. The incubation period for E. coli O157:H7 is usually three to four days; however, the incubation also can range from just one day to eight days.13 Typical hemolytic uremic syndrome usually develops after a prodrome of diarrhea. Clinical features identifying patients at high risk for hemolytic uremic syndrome are vague and may mimic common gastroenteritis, including bloody diarrhea occurring from three days to more than two weeks before hemolytic uremic syndrome is diagnosed.2 Additional symptoms include nonbloody diarrhea, abdominal cramping, and nausea or vomiting. Fever may be low grade or even absent. Ten percent of cases are associated with rectal prolapse with colitis.2

Hemolytic uremic syndrome cannot be diagnosed without evidence of hemolytic anemia. Hematologic findings include destruction and fragmentation of erythrocytes that result in microangiopathic hemolytic anemia. This develops in all patients within a day or so of contamination and may result in respiratory and cardiovascular compromise. Mean hemoglobin concentration of 6 g per dL (60 g per L) is common and requires red blood cell transfusion.2 Ninety-two percent of patients with hemolytic uremic syndrome develop thrombocytopenia, which results from entrapment of platelets in the organs.2 Clotting times are normal, and petechiae and purpura are uncommon features of hemolytic uremic syndrome.22 Platelet transfusion is not recommended because it could exacerbate the thrombotic process; however, risks and benefits should be considered when platelet transfusion is indicated (e.g., invasive vascular procedure, active bleed).2

Acute renal failure results when microthrombi are deposited in kidney parenchyma. This manifests in the form of hypertension associated with oliguria and anuria, which are early signs of acute renal failure.

The central nervous system is another organ system that could become involved. Thirty-three percent of patients with hemolytic uremic syndrome experience neurologic complaints such as irritability, seizures, and altered mental status.2

Differential Diagnosis

The differential diagnosis of hemolytic uremic syndrome includes viral or bacterial gastroenteritis, septicemia with disseminated intravascular coagulation, and thrombotic thrombocytopenia (Table 3). Diarrhea or abdominal cramps and absence of fever can be mistaken for inflammatory bowel disease, ischemic colitis, or intussusception. Additionally, abdominal pain and tenderness could mimic appendicitis or an acute abdomen.

Management

Typical hemolytic uremic syndrome is a self-limiting disease with spontaneous recovery, although close monitoring and treatment of symptoms are essential. Because hemolytic uremic syndrome has a wide spectrum of presentations, supportive therapy (e.g., good nutrition, close monitoring of fluid and electrolyte status) is crucial for a good outcome. Recent studies indicate that the amount of parenteral hydration given to a patient before the development of hemolytic uremic syndrome, especially the amount of sodium, is crucial in preventing anuria and, ultimately, dialysis.11

Strict fluid balance monitoring is important in detecting early renal failure. If failure develops, it should be handled aggressively24 by starting renal replacement therapy (e.g., peritoneal dialysis, hemodialysis).15 Hypertension is treated traditionally with antihypertensives and diet.

Antibiotics and antimotility agents are not recommended as treatments for hemolytic uremic syndrome during the diarrheal stage of the disease. Studies of antibiotic usage in children with E. coli O157:H7 infections show an increased risk of complications from hemolytic uremic syndrome.25,26 One study reported that using antibiotics to treat children testing positive for E. coli O157:H7 increased their risk of developing hemolytic uremic syndrome.26 Additionally, some children who were diagnosed with Shigella dysenteriae type 1 and treated with ampicillin developed hemolytic uremic syndrome.25

Serial monitoring of the hematocrit and platelet count is important. Currently, platelet transfusion is controversial because it can worsen the thrombotic process.27 However, transfusion of red blood cells may be needed to aggressively correct anemia, which can deteriorate the patient’s condition and further complicate the picture by causing respiratory and cardiovascular compromise.

Modalities such as plasmapheresis, antithrombotic agents, steroids, and Shiga toxin-binding agents have proved ineffective and remain controversial.

Complications

Complications of hemolytic uremic syndrome can involve the renal, gastrointestinal, or neurologic systems (Table 5). The most severe renal complication is chronic renal failure. Approximately 12 percent of patients who contract hemolytic uremic syndrome either develop end-stage renal disease or die.28 Additional complications include hypertension, proteinuria, and renal impairment. However, extra-renal complications such as pancreatitis (which may lead to diabetes), cerebral involvement, cardiomyopathy, and gastrointestinal involvement also may occur.

Approximately 10 percent of patients with hemolytic uremic syndrome develop central nervous system problems and subsequent coma, hemiparesis, or stroke.27,28 In one review of 49 hemolytic uremic syndrome studies, investigators found that of 3,476 patients with diarrhea-positive hemolytic uremic syndrome, 313 (9 percent) died, 104 (3 percent) developed end-stage renal disease, and 869 (25 percent) exhibited renal sequelae.28 Neurologic involvement correlates highly with a fatal outcome.29

Prognosis

Infection-induced hemolytic uremic syndrome presents with a diarrheal prodrome and has a good prognosis. The average length of hospital stay in children is 11 days, with a range of one to 388 days.12 Genetic, drug-induced, or idiopathic hemolytic uremic syndrome is heterogeneous, is not preceded by diarrhea, and has a poor prognosis, with incomplete recovery in most cases. Currently, the mortality rate for all patients with hemolytic uremic syndrome is less than 10 percent.30

The Author
SAMIYA RAZZAQ, M.D., F.A.A.P., is assistant professor in the Department of Pediatrics at the University of Arkansas for Medical Sciences College of Medicine, Little Rock, and is assistant professor at Arkansas Children’s Hospital, Little Rock. Dr. Razzaq received her medical degree from Rawalpindi (Pakistan) Medical College, and completed a residency in pediatrics at Miami (Fla.) Children’s Hospital.

REFERENCES
1. Andreoli SP. The pathophysiology of the hemolytic uremic syndrome. Curr Opin Nephrol Hypertens 1999;8:459-64.
2. Walker WA. Pediatric Gastrointestinal Disease: Pathophysiology, Diagnosis, Management. 4th ed. Hamilton, Ont.: BC Decker, 2004.
3. Green DA, Murphy WG, Uttley WS. Haemolytic uraemic syndrome: prognostic factors. Clin Lab Haematol 2000;22:11-4.
4. Cody SH, Glynn MK, Farrar JA, Cairns KL, Griffin PM, Kobayashi J, et al. An outbreak of Escherichia coli O157:H7 infection from unpasteurized commercial apple juice. Ann Intern Med 1999;130:202-9.
5. Hilborn ED, Mshar PA, Fiorentino TR, Dembek ZF, Barrett TJ, Howard RT, et al. An outbreak of Escherichia coli O157:H7 infections and haemolytic uraemic syndrome associated with consumption of unpasteurized apple cider. Epidemiol Infect 2000;124:31-6.
6. Kawamura N, Yamazaki T, Tamai H. Risk factors for the development of Escherichia coli O157:H7 associated with hemolytic uremic syndrome. Pediatr Int 1999;41:218-22.
7. Fukushima H, Hashizume T, Morita Y, Tanaka J, Azuma K, Mizumoto Y, et al. Clinical experiences in Sakai City Hospital during the massive outbreak of enterohemorrhagic Escherichia coli O157 infections in Sakai City, 1996. Pediatr Int 1999;41:213-7.
8. Zipfel PF, Neuman HP, Jozsi M. Genetic screening in haemolytic uraemic syndrome. Curr Opin Nephrol Hypertens 2003;12:653-7.
9. Index of suspicion. Pediatr Rev 2002;23:433-8.
10. Liu J, Hutzler M, Li C, Pechet L. Thrombotic thrombocytopenic purpura (TTP) and hemolytic uremic syndrome (HUS): the new thinking. J Thromb Thrombolysis 2001;11:261-72.
11. Thorpe CM. Shiga toxin-producing Escherichia coli infection. Clin Infect Dis 2004;38:1298-303.
12. Banatvala N, Griffin PM, Greene KD, Barrett TJ, Bibb WF, Green JH, et al. The United States national prospective hemolytic uremic syndrome study: microbiologic, serologic, clinical, and epidemiologic findings. J Infect Dis 2001;183:1063-70.
13. Boyce TG, Swerdlow DL, Griffin PM. Escherichia coli O157:H7 and the hemolytic-uremic syndrome. N Engl J Med 1995;333:364-8.
14. Crump JA, Sulka AC, Langer AJ, Schaben C, Crielly AS, Gage R, et al. An outbreak of Escherichia coli O157:H7 infections among visitors to a dairy farm. N Engl J Med 2002;347:555-60.
15. Andreoli SP. Acute renal failure. Curr Opin Pediatr 2002;14:183-8.
16. Haack JP, Jelacic S, Besser TE, Weinberger E, Kirk DJ, McKee GL, et al. Escherichia coli O157 exposure in Wyoming and Seattle: serologic evidence of rural risk. Emerg Infect Dis 2003;9:1226-31.
17. Baylis CL, MacPhee S, Robinson AJ, Griffiths R, Lilley K, Betts RP. Survival of Escherichia coli O157:H7, O111:H- and O26:H11 in artificially contaminated chocolate and confectionery products. Int J Food Microbiol 2004;96:35-48.
18. Chang HG, Tserenpuntsag B, Kacica M, Smith PF, Morse DL. Hemolytic uremic syndrome incidence in New York. Emerg Infect Dis 2004;10:928-31.
19. Westerholt S, Peiper AK, Griebel M, Volk HD, Hartung T, Oberhoffer R. Characterization of the cytokine immune response in children who have experienced an episode of typical hemolytic-uremic syndrome. Clin Diagn Lab Immunol 2003;10:1090-5.
20. Slutsker L, Ries AA, Maloney K, Wells JG, Greene KD, Griffin PM. A nationwide case-control study of Escherichia coli O157:H7 infection in the United States. J Infect Dis 1998;177:962-6.
21. American Academy of Pediatrics. Committee on Infectious Diseases. Red Book: 2003 report of the committee on infectious diseases. 26th ed. Elk Grove Village, Ill.: American Academy of Pediatrics, 2003.
22. Neild GH. Haemolytic-uraemic syndrome in practice [Published correction appears in Lancet 1994;343:552]. Lancet 1994;343:398-401.
23. Centers for Disease Control and Prevention. Summary of notifiable diseases, United States, 1996. MMWR Morb Mortal Wkly Rep 1997;45:1-87.
24. D’Souza IE, Phadke KD, Subba Rao SD. Atypical hemolytic uremic syndrome. Indian Pediatr 2002;39:162-7.
25. Bin Saeed AA, El Bushra HE, Al-Hamdan NA. Does treatment of bloody diarrhea due to Shigella dysenteriae type 1 with ampicillin precipitate hemolytic uremic syndrome? Emerg Infect Dis 1995;1:134-7.
26. Wong CS, Jelacic S, Habeeb RL, Watkins SL, Tarr PI. The risk of the hemolytic-uremic syndrome after treatment of Escherichia coli O157:H7 infections. N Engl J Med 2000;342:1930-6.
27. Tarr PI, Gordon CA, Chandler WL. Shiga-toxin-producing Escherichia coli and haemolytic uraemic syndrome. Lancet 2005;365:1073-86.
28. Garg AX, Suri RS, Barrowman N, Rehman F, Matsell D, Rosas-Arellano MP, et al. Long-term renal prognosis of diarrhea-associated hemolytic uremic syndrome: a systematic review, meta-analysis, and meta-regression. JAMA 2003;290:1360-70.
29. Gerber A, Karch H, Allerberger F, Verweyen HM, Zimmerhackl LB. Clinical course and the role of shiga toxin-producing Escherichia coli infection in the hemolytic-uremic syndrome in pediatric patients, 1997-2000, in Germany and Austria: a prospective study. J Infect Dis 2002;186:493-500.
30. Siegler RL, Pavia AT, Christofferson RD, Milligan MK. A 20-year population-based study of postdiarrheal hemolytic uremic syndrome in Utah. Pediatrics 1994;94:35-40.

Copyright © 2006 by the American Academy of Family Physicians.
This content is owned by the AAFP. A person viewing it online may make one printout of the material and may use that printout only for his or her personal, non-commercial reference. This material may not otherwise be downloaded, copied, printed, stored, transmitted or reproduced in any medium, whether now known or later invented, except as authorized in writing by the AAFP. Contact afpserv@aafp.org for copyright questions and/or permission requests.

Get Help

Affected by an outbreak or recall?

The team at Marler Clark is here to answer all your questions. Find out if you’re eligible for a lawsuit, what questions to ask your doctor, and more.

Get a free consultation
Related Resources
E. coli Food Poisoning

What is E. coli and how does it cause food poisoning? Escherichia coli (E. coli) is a highly studied, common species of bacteria that belongs to the family Enterobacteriaceae, so...

E. coli O157:H7

E. coli O157:H7 is a foodborne pathogen that causes food poisoning. E. coli O157:H7 is the most commonly identified and the most notorious Shiga toxin-producing E. coli (STEC) serotype in...

Non-O157 STEC

Non-O157 Shiga Toxin-Producing E. coli can also cause food poisoning. E. coli O157:H7 may be the most notorious serotype of Shiga toxin-producing E. coli (STEC), but there are at least...

Sources of E. coli

Where do E. coli O157:H7 and non-O157 Shiga toxin-producing E. coli (STEC) come from? The primary reservoirs, or ultimate sources, of E. coli O157:H7 and non-O157 STEC in nature are...

Transmission of and Infection with E. coli

While many dairy cattle-associated foodborne disease outbreaks are linked to raw milk and other raw dairy products (e.g., cheeses, butter, ice cream), dairy cattle still represent a source of contamination...

Outbreak Database

Looking for a comprehensive list of outbreaks?

The team at Marler Clark is here to answer all your questions. Find out if you’re eligible for a lawsuit, what questions to ask your doctor, and more.

View Outbreak Database